把手教您学ABB变频器驱动电路控制原理
把手教您学ABB变频器驱动电路控制原理
变频器的驱动电路在整台变频器中是故障发生机率比较高的一部分电路,如果我们学懂了变频器驱动电路的控制原理,对于我们判断故障、维修故障可以起到事半功倍的效果。图1广州科誉绘制的ABB变频器原厂的驱动电路图纸,结合ABB变频器电路板实物,以ABB变频器六路驱动电路中其中一路为例,给朋友们详细讲解一下它的控制原理,希望能够对朋友们有所帮助。
驱动电路的作用主要是执行CPU电路板传送过来的指令(六路脉冲),将CPU送来的微弱电信号转换成符合驱动IGBT大功率管的电流与电压信号,驱动六个IGBT大功管,使它有次序的处于导通和截止状态,实现将直流电逆变为交流电的目的。
ABB变频器的驱动电路中,采用了六只型号为HCPL-3120#300的光电耦合器,通过一个场效应管控制光电耦合器HCPL-3120#300内部的发光二极管的工作状态,来控制光电耦合器HCPL-3120#300输出引脚6脚的输出状态,实现控制IGBT大功率管导通与否的目的。驱动电路的实物图请参看图2。
我们以ABB变频器为例,请朋友们结合图2的ABB变频器电源驱动板实物图。在驱动电路中,以六个光耦、控制光耦发光二极管状态的管子为核心元件。在图2中中间部分元件旁标注H1、H2、H3、H4、H5、H6字样的元件就是六个光电耦合器HCPL-3120。元件旁标注V18、V19、V20、V30、V25、V27六个元件就是控制光电耦合器HCPL-3120#300内部的发光二极管工作状态的场效应管。当我们在电源驱动电路板上找出驱动电路的核心元件后,我们就能大致识别出驱动电路部分了。
我们以ABB变频器六路驱动电路中下三桥电路中的其中一路为例,讲解一下它的控制原理,请朋友们结合图3学习。
从开关电源输送来的+18V电压经过R76电阻限流后,加到光电耦合1器H4的8脚,光电耦合器H4的5脚为开关电源负5V供电端,这样满足了H4光耦的工作条件。
+5VF的电压经过电阻R82、R67分压后加到了H4光耦的2脚(内部发光二极管的阳极)、经过H4光耦内部发光二极管后从3脚流出加到了场效应管V30的D极(漏极),通过V30内部到UDC-1(电源的负极端),形成V30的漏源极供电回路。
当变频器的主板发送六路驱动脉冲过来时,其中的一路脉冲标号为CWL信号通过R73、R70分压后加到了场效应管V30的栅极,此时满足了场效应管V30的导通条件,于是场效应管V30进入导通状态,H4光耦内部发光二极管形成电流通路,处于发光状态。
H4光耦内部的电路接收到发光二极管发出的光束后,使H4光耦6脚的光耦输出一个18V的电压,此电压经过电阻R121、R74分压,V24稳压管进行稳压后,加到了IGBT模块的G2端子,为IGBT的内部的管子提供一个15V的电压,IGBT得到此电压,进入到导通状态。
当CWL信号端子的脉冲消失时,加到场效应管V30的栅极电压消失,场效应管V30由导通状态转为截止状态,H4光耦内部发光二极管不能形成电流通路,发光二极管就处于熄灭状态。H4光耦6脚的光耦输出负5伏电压加到了IGBT模块的G2端子,IGBT进入截止状态。上面广州科誉以六路驱动电路的其中一路为例讲解了它的控制原理,其它几路的控制原理也是一样的,朋友们可以试着分析一下,如果有技术方面要交流的,可以添加科誉的微信13610069385进行交流。
实际上变频器的驱动电路就是在不断接收主板发送过来的六路驱动脉冲,按一定的时序控制IGBT大功率管的导通和截止,使510的直流电压逆变成幅度可以调节的交流电压(0至380VAC)的。
广州科誉工业电路板、变频器维修培训将于2020年12月6日开新班,下下期将于2021年1月2日开新班,广州科誉向您郑重承诺:(1)以西门子、ABB、丹佛斯、施耐德、台达、通力电梯V3F16L、V3F25等品牌变频器,以工业设备中的电路板为教学蓝本开展教学。(2)一次收费,学会为止。(3)学完后提供技术与配件支持。有需要参加学习的朋友们赶快拿起电话,拨通020-37737885报名吧。下期推文将给朋友们讲解变频器电流检测电路的控制原理,我们下期再见。
- 02-17广州科誉2024年工业电路板变频器维修培训开工大吉
- 05-17ABB变频器维修之开关电源维修实例
- 05-06西门子变频器F0003故障维修方法
- 07-29变频器维修视频教程
- 12-17变频器维修视频教程
- 07-19通力电梯V3F25变频器结构组成及各部分功能详解
- 04-28ABB变频器380V电源进线端子烧熔原因分析与维修
- 02-192021年变频器维修培训开工大吉